Microfluidic serial dilution circuit.

نویسندگان

  • Brian M Paegel
  • William H Grover
  • Alison M Skelley
  • Richard A Mathies
  • Gerald F Joyce
چکیده

In vitro evolution of RNA molecules requires a method for executing many consecutive serial dilutions. To solve this problem, a microfluidic circuit has been fabricated in a three-layer glass-PDMS-glass device. The 400-nL serial dilution circuit contains five integrated membrane valves: three two-way valves arranged in a loop to drive cyclic mixing of the diluent and carryover, and two bus valves to control fluidic access to the circuit through input and output channels. By varying the valve placement in the circuit, carryover fractions from 0.04 to 0.2 were obtained. Each dilution process, which is composed of a diluent flush cycle followed by a mixing cycle, is carried out with no pipeting, and a sample volume of 400 nL is sufficient for conducting an arbitrary number of serial dilutions. Mixing is precisely controlled by changing the cyclic pumping rate, with a minimum mixing time of 22 s. This microfluidic circuit is generally applicable for integrating automated serial dilution and sample preparation in almost any microfluidic architecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On-demand Serial Dilution Using Quantized Nano/picoliter-scale Droplets

This paper describes a fully automated droplet-based microfluidic device for on-demand serial dilution that is capable of achieving a dilution ratio of >6000 (concentration ranges from 1 mM to 160nM) over 35 nanoliter-scale droplets. This serial diluter can be applied to high throughput and label-free kinetic assays by integrating with our previously developed on-demand droplet-based microfluid...

متن کامل

Darwinian Evolution on a Chip

Computer control of Darwinian evolution has been demonstrated by propagating a population of RNA enzymes in a microfluidic device. The RNA population was challenged to catalyze the ligation of an oligonucleotide substrate under conditions of progressively lower substrate concentrations. A microchip-based serial dilution circuit automated an exponential growth phase followed by a 10-fold dilutio...

متن کامل

Fault Tolerant DNA Computing Based on ‎Digital Microfluidic Biochips

   Historically, DNA molecules have been known as the building blocks of life, later on in 1994, Leonard Adelman introduced a technique to utilize DNA molecules for a new kind of computation. According to the massive parallelism, huge storage capacity and the ability of using the DNA molecules inside the living tissue, this type of computation is applied in many application areas such as me...

متن کامل

Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio.

This paper reports a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio for generating linear concentration profiles as well as logarithmic concentration profiles spanning 3 and 6 orders of magnitude. The microfluidic networks were composed of thin fluidic-resistance microchannels with 160 to 730 microm(2) cross-sectional areas and thick diffusio...

متن کامل

SERS-based immunoassay using a gold array-embedded gradient microfluidic chip.

Here we report the development of a programmable and fully automatic gold array-embedded gradient microfluidic chip that integrates a gradient microfluidic device with gold-patterned microarray wells. This device provides a convenient and reproducible surface-enhanced Raman scattering (SERS)-based immunoassay platform for cancer biomarkers. We used hollow gold nanospheres (HGNs) as SERS agents ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 78 21  شماره 

صفحات  -

تاریخ انتشار 2006